Deprecated: Creation of dynamic property db::$querynum is deprecated in /www/wwwroot/51tying.com/inc/func.php on line 1413

Deprecated: Creation of dynamic property db::$database is deprecated in /www/wwwroot/51tying.com/inc/func.php on line 1414

Deprecated: Creation of dynamic property db::$Stmt is deprecated in /www/wwwroot/51tying.com/inc/func.php on line 1453

Deprecated: Creation of dynamic property db::$Sql is deprecated in /www/wwwroot/51tying.com/inc/func.php on line 1454
全球AI发展白皮书:八大关键技术中国崛起中_bob平台官网入口下载-bob安卓官方平台app
视觉检测领先者
全国咨询热线:13812953225
产品中心
当前位置:首页 > 产品中心

全球AI发展白皮书:八大关键技术中国崛起中

发布时间:2024-07-26 01:41:29   来源:bob平台官网入口

人工智能是一个很宽泛的概念,概括而言是对人的意识和思维过程的模拟,利用机器学习和数据分析方法赋予...

产品介绍

  人工智能是一个很宽泛的概念,概括而言是对人的意识和思维过程的模拟,利用机器学习和数据分析方法赋予机器类人的能力。人工智能将提升社会劳动生产率,特别是在有效降低劳动成本、优化产品和服务、创造新市场和就业等方面为人类的生产和生活带来革命性的转变。

  据Sage预测,到2030年人工智能的出现将为全球GDP带来额外14%的提升,相当于15.7万亿美元的增长。全球范围内越来越多的政府和企业组织逐渐认识到人工智能在经济和战略上的重要性,并从国家战略和商业活动上涉足人工智能。全球人工智能市场将在未来几年经历现象级的增长。据中国产业信息网和中国信息通信研究院数据,世界人工智能市场将在2020年达到6800亿元人民币,复合增长率达26.2%,而中国人工智能市场也将在2020年达到710亿元人民币,复合增长率达44.5%。

  计算机视觉(Computer Vision)是一门研究如何使机器“看”的科学,更进一步地说,是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量的科学。

  近几年计算机视觉技术实现了快速发展,其主要学术原因是2015年基于深度学习的计算机视觉算法在ImageNet数据库上的识别准确率首次超过人类,同年Google也开源了自己的深度学习算法。计算机视觉系统的主要功能有图像获取、预处理、特征提取、检测/分割和高级处理。

  交通:自动驾驶汽车需要计算机视觉。特斯拉(Tesla)、宝马(BMW)、沃尔沃(Volvo)和奥迪(Audi)等汽车制造商Y已经通过摄像头、激光雷达、雷达和超声波传感器从环境中获取图像,研发自动驾驶汽车来探测目标、车道标志和交通信号,从而安全驾驶。

  安防:中国在使用人脸识别技术方面无疑处于领先地位,这项技术被广泛应用于警察工作、支付识别、机场安检,甚至在北京天坛公园分发厕纸、防止厕纸被盗,以及其他许多应用。

  医疗:由于90%的医疗数据都是基于图像的,因此医学中的计算机视觉有很多用途。比如启用新的医疗诊断方法,分析X射线,X光检查,监测患者等。

  翻译:传统翻译采用人工查词的方式,不但耗时长,而且错误率高。图像识别技术(OCR)的出现大大提升了翻译的效率和准确度,用户通过简单的拍照、截图或划线就能得到准确的翻译结果。

  体育赛事:计算机视觉还有助于比赛和策略分析、球员表现和评级,以及跟踪体育节目中品牌赞助的可见性。

  农业:半自动联合收割机可以利用人工智能和计算机视觉来分析粮食品质,并找出农业机械穿过作物的最佳路径。另外也可用来识别杂草和作物,有效减少除草剂的使用量。

  制造业:计算机视觉也可以帮助制造商更安全、更智能、更有效地运行,比如预测性维护设备故障,对包装和产品质量进行监控,并通过计算机视觉减少不合格产品。

  自然语言处理(Natural Language Processing)是一门通过建立形式化的计算模型来分析、理解和处理自然语言的学科,也是一门横跨语言学、计算机科学、数学等领域的交叉学科。

  自然语言处理,是指用计算机对自然语言的形、音、义等信息进行处理,即对字、词、句、篇章的输入、输出、识别、分析、理解、生成等的操作和加工。自然语言处理的具体表现形式包括机器翻译、文本摘要、文本分类、文本校对、信息抽取、语音合成、语音识别等。可以说,自然语言处理就是要计算机理解自然语言,自然语言处理机制涉及两个流程,包括自然语言理解和自然语言生成,自然语言理解是让计算机把输入的语言变成有意思的符号和关系,然后根据目的再处理;自然语言生成则是把计算机数据转化为自然语言。实现人机间的信息交流,是人工智能界、计算机科学和语言学界所共同关注的重要问题。

  从2008年到现在,在图像识别和语音识别领域的成果激励下,人们也逐渐开始引入深度学习来做自然语言处理研究,由最初的词向量到2013年word2vec,将深度学习与自然语言处理的结合推向了高潮,并在机器翻译、问答系统、阅读理解等领域取得了一定成功。

  深度学习是一个多层的神经网络,从输入层开始经过逐层非线性的变化得到输出。从输入到输出做端到端的训练。把输入到输出对的数据准备好,设计并训练一个神经网络,即可执行预想的任务。RNN已经是自然语言护理最常用的方法之一,GRU、LSTM 等模型相继引发了一轮又一轮的热潮。

  自然语言处理的研究可以分为基础性研究和应用性研究两部分,语音和文本是两类研究的重点。基础性研究主要涉及语言学、数学、计算机学科等领域,相对应的技术有消除歧义、语法形式化等。应用性研究则主要集中在一些应用自然语言处理的领域,例如信息检索、文本分类、机器翻译等。

  由于我国基础理论即机器翻译的研究起步较早,且基础理论研究是任何应用的理论基础,所以语法、句法、语义分析等基础性研究历来是研究的重点,而且随着互联网网络技术的发展,智能检索类研究近年来也逐渐升温。近年来,计算机视觉在产业界和学术界不断取得突破,取得代表性成果的组织有谷歌、阿里、百度、搜狗、科大讯飞等公司,清华大学、Allen人工智能研究所等高校/研究所以及其他多种类型的组织或个人。

  以往的媒体信息处理模型往往只针对某种单一形式的媒体数据进行推理分析,比如图像识别、语音识别、文本识别等,而越来越多的任务需要像人一样能够协同综合处理多种形式(文本、音频、视频、图像等)的信息,这就是跨媒体分析与推理。

  跨媒体是一个比较广义的概念,既表现为包括网络文本、图像、音频、视频等复杂媒体对象混合并存,又表现为各类媒体对象形成复杂的关联关系和组织结构,还表现在具有不同模态的媒体对象跨越媒介或平台高度交互融合。通过“跨媒体”能从各自的侧面表达相同的语义信息,能比单一的媒体对象及其特定的模态更加全面地反映特定的内容信息。相同的内容信息跨越各类媒体对象交叉传播与整合,只有对这些多模态媒体进行融合分析,才能尽可能全面、正确地理解这种跨媒体综合体所蕴涵的内容信息。

  跨媒体分析推理技术主要包括跨媒体检索、跨媒体推理、跨媒体存储几个研究范畴,可应用于网络内容监管、舆情分析、信息检索、智慧医疗、自动驾驶、智能穿戴设备等场景。

  作为教育领域最具突破性的技术,智适应学习技术 ( IntelligentAdaptive Learning) 模拟了老师对学生一对一教学的过程,赋予了学习系统个性化教学的能力。和传统千人一面的教学方式相比,智适应学习系统带给了学生个性化的学习体验,提升了学生的学习投入度和学习效率。

  采用了智适应学习技术的学习系统能够针对学生的具体学习情况提供个性化学习解决方案,包括定位学生的知识漏洞、持续性地评估学生的学习能力水平和知识状态、实时动态提供个性化学习内容。智适应学习技术让教育领域一直困扰的质量、成本、可获取性三大矛盾因素变成了历史。

  智适应学习技术体系包括知识状态诊断、能力水平评测和学习内容推荐等。知识状态诊断技术是指通过少量试题,在较短时间精准诊断出学生的知识漏洞,这一技术较常用的算法是知识空间理论。能力水平评测技术是指评测出学生的知识掌握情况,分析出学生得到提升的学习能力、学习思维和学习方法,这一技术较常用的算法是项目反应理论、贝叶斯知识追踪。学习内容推荐技术是指依据学生学习情况,推荐合适的学习内容,这一技术较常用的算法是机器学习算法,该算法以学生的所有信息为输入,输出是学生接下来需要学习的内容,达到最大化学习效率的目的。

  在2010年之后,智适应学习技术得到了快速发展,这背后的推动力有强大的计算力和海量的数据,更重要的还有贝叶斯网络算法的应用。学生知识状态的建立是一件高成本的事,传统模式下判断学生的知识状态需要针对每一个知识点出题考察,有了强大的计算力后,就能够快速模拟出学生的知识状态空间,并且定位到学生的知识状态;海量的数据有助于机器学习算法发挥更大的价值。采用了贝叶斯算法之后,智适应学习系统能够实时持续性地评估学生当前的能力水平、并且及时动态调整学习内容,这在之前是没有实现的。

  目前在全球已有一亿多学生在使用智适应学习系统,覆盖了各个年龄段,从小学、初中、高中,到高等教育、职业教育和成人教育,已应用到文、理、工、医等不同学科领域。

  群体智能(collective intelligence)也称集体智能、群智。群体智能是一种共享的智能,是集结众人的意见进而转化为决策的一种过程,用来对单一个体做出随机性决策的风险。对群体智能的研究,实际上可以被认为是一个属于社会学、商业、计算机科学、大众传媒和大众行为的分支学科,研究从夸克层次到细菌、植物、动物以及人类社会层次的群体行为的一个领域。

  群体智能最早源于对以蚂蚁、蜜蜂等为代表的社会性昆虫的群体行为的研究,自1991年意大利学者Dorigo提出蚁群优化(Ant Colony Optimization, ACO)理论开始,群体智能作为一个理论被正式提出,并逐渐吸引了大批学者的关注,从而掀起了研究高潮。

  1995年,Kennedy 等学者提出粒子群优化算法(Particle Swarm Optimization, PSO),此后群体智能研究迅速展开。目前群体智能的研究主要包括智能蚁群算法和粒子群算法,智能蚁群算法主要包括蚁群优化算法、蚁群聚类算法和多机器人协同合作系统。其中,蚁群优化算法和粒子群优化算法在求解实际问题时应用最为广泛。

  随着群体智能算法在诸如机器学习、过程控制、经济预测、工程预测等领域取得了前所未有的成功,它已经引起了包括数学、物理学、计算机科学、社会科学、经济学及工程应用等领域的科学家们的极大兴趣。目前关于群体智能计算的国际会议在全世界各地定期召开,各种关于信息技术或计算机技术的国际会议也都将智能进化技术作为主要研讨课题之一。

  自主无人系统是能够通过先进的技术进行操作或管理而不需要人工干预的系统,是由机械、控制、计算机、通信、材料等多种技术融合而成的复杂系统。自主无人系统可应用到无人驾驶车辆、无人机、服务型机器人、空间机器人、海洋机器人、无人车间、智能工厂等场景中,并实现降本增效的作用。

  自主性和智能性是自主无人系统最重要的两个特征。人工智能无疑是发展智能无人自主系统的关键技术之一。利用人工智能的各种技术,如图像识别、人机交互、智能决策、推理和学习,是实现和不断提高系统这两个特征的最有效的方法。

  目前,关于智能芯片的定义并没有一个严格和公认的标准。一般来说,运用了人工智能技术的芯片都可以称为智能芯片,但是狭义上的智能芯片特指针对人工智能算法做了特殊加速设计的芯片,现阶段,这些人工智能算法一般以深度学习算法为主,也可以包括其它机器学习算法。智能芯片可按技术架构、功能和应用场景等维度分成多种类别。

  近年来我国学术界和产业界都加大了对芯片技术的研发力度,国内智能计算芯片技术不断取得新的成果。一些基于传统计算架构的芯片和各种软硬件加速方案相结合,在一些人工智能应用场景下都取得了巨大成功,但由于市场需求的多样性,很难有任何单一的设计和方法能够很好地适用于各类情况。因此,学术界和产业界涌现出多种专门针对人工智能应用的新颖设计和方法,覆盖了从半导体材料、器件、电路到体系结构的各个层次。

  脑机接口(Brain-Computer Interface,BCI)是在人或动物脑(或者脑细胞的培养物)与外部设备间建立的直接连接通路。通过单向脑机接口技术,计算机可以接受脑传来的命令,或者发送信号到脑,但不能同时发送和接收信号。而双向脑机接口允许脑和外部设备间的双向信息交换。2013年,自美国首次宣布启动“脑计划”以来,欧洲、日本、韩国等陆续参与“脑科技”竞赛项目,据已公开数据表明,全球在脑机接口相关领域的研发支持已经超过200亿美元。

  在人工智能技术向各行各业渗透的过程中,不同产品由于使用场景复杂度的不同、技术发展水平的不同,而导致其成熟度也不同。比如,教育和音响行业的核心环节已有成熟产品,技术成熟度和用户心理接受度都较高;个人助理和医疗行业在核心环节已出现试验性的初步成熟产品,但由于场景复杂,涉及个人隐私和生命健康问题,当前用户心理接受度较低;自动驾驶和咨询行业在核心环节则尚未出现成熟产品,无论是技术方面还是用户心理接受度方面都还没有达到足够成熟的程度。

  在人工智能技术向各行各业渗透的过程中,安防和金融行业的人工智能使用率最高,零售、交通、教育、医疗、制造、健康行业次之。安防行业一直围绕着视频监控在不断改革升级,在政府的大力支持下,我国已建成集数据传输和控制与一体的自动化监控平台,随着计算机视觉技术出现突破,安防行业便迅速向智能化前进。金融行业拥有良好的数据积累,在自动化的工作流与相关技术的运用上有不错的成效,组织机构的战略与文化也较为先进,因此人工智能技术也得到了良好的应用。

  零售行业在数据积累、人工智能应用基础、组织结构方面均有一定基础。交通行业则在组织基础与人工智能应用基础上优势明显,并已经开始布局自动驾驶技术。教育行业的数据积累虽然薄弱,但行业整体对人工智能持重点关注的态度,同时也开始在实际业务中结合人工智能技术,因此未来发展可期。医疗与健康行业拥有多年的医疗数据积累与流程化的数据使用过程,因此在数据与技术基础上有着很强的优势。制造行业虽然在组织机构上的基础相对薄弱,但拥有大量高质量的数据积累以及自动化的工作流,为人工智能技术的介入提供了良好的技术铺垫。

  交通:人工智能应用到拥堵分析、路线优化、车辆调度、驾驶辅助等场景,有效改善交通问题 。

  教育:由表及里,人工智能技术逐渐深入学习环节 。人工智能已在老师教学与学生学习、评测的各个环节切入教育领域,相关产品服务包括拍照搜题、分层排课、口语测评、组卷卷、作文批改、作业布置等功能,涉及了自适应、语音识别、计算机视觉、知识图谱、自然语言处理、机器翻译、机器学习等多项人工智能技术,正在创造着更加个性化、服务于终身学习的智能高效学习环境。

  客观地说,虽然人工智能技术不断向众多行业和商业场景渗透,但目前人工智能的能力仍然不是像云计算一样可以随取随用的通用资源,主要的人工智能技术还掌握在大型科技公司和互联网巨头的手里,若能让人工智能普惠到更多公司和用户,人工智能社会的建设才会明显提速。在政府和大型公司的领跑下,越来越多的人工智能开放平台开始涌现出来。

  2017-2018年,科技部等多部门经充分调研和论证,确定了五大国家新一代人工智能开放创新平台:分别依托百度、阿里云、腾讯、科大讯飞公司、商汤集团,建设自动驾驶、城市大脑、医疗影像、智能语音、智能视觉人工智能开放创新平台,并由科技部、发改委、财政部、教育部、工信部、中科院等15个部门构成的新一代AI发展规划推进办公室来推进项目、基地、人才的统筹布局。这批“国家队”开放创新平台将在四个方面发挥核心使命,包括建立人工智能国际化人才体系并培养国际化人才,通过人工智能赋能,创造以众创空间、孵化器为代表的大众创业、万众创新的生态环境等。

  人工智能开放平台的建立,有助于降低企业的技术门槛,让所有创业者都享受到人工智能技术进步所带来的红利,同时也有助于连接各行业内的产学研机构,实现数据打通,避免重复工作,构筑完整的产业生态,大幅提升整个产业的生产效率。除了国家级人工智能开放创新平台以外,越来越多人工智能领域的其他企业也开始搭建人工智能开放平台,如教育领域的松鼠AI 1对1建立了智适应教育开放平台,京东建立了以智能零售为京东人工智能开放平台NeuHub等。如果说早年间的人工智能开放平台由国外巨头如谷歌等领跑,那么随着中国人工智能行业的整体发展,国内人工智能企业也开始尝试营造开放的行业生态。

  自动驾驶国家开放平台主要基于百度Apollo开放平台,是一个以百度技术为依托,面向汽车行业及自动驾驶领域的合作伙伴提供的开放、完整、安全的软硬件和服务平台,帮助开发者快速搭建完整的自动驾驶系统,“开放能力、共享资源、加速创新、持续共赢”是百度Apollo生态的重要原则。这是全世界内自动驾驶技术的第一次系统级开放。

  Apollo开放平台体系包括车辆认证平台、硬件开发平台、开源软件平台、云端服务平台、量产解决方案五大部分。

  截止2018年7月底,Apollo已先后开放了10、15、20、25、30五个版本的能力,分别为封闭场地循迹自动驾驶能力、固定车道自动驾驶能力、简单城市路况自动驾驶能力以及限定区域视觉高速自动驾驶能力、量产园区自动驾驶能力。未来将逐步开放限定区域城市、量产限定区域、量产简单城市道路、高速和城市道路等自动驾驶能力。

  截止2018年12月,在严格控制数量和质量的情况下,Apollo合作伙伴已超过120余家,成为全球规模最大的自动驾驶生态,覆盖产业链整个环节,包括整车厂、一级供应商(Tier1)、零部件厂商、出行服务商、初创企业、通信企业、高校和地方政府等,目前已发往北京、雄安、深圳、福建平潭、湖北武汉、日本京都等地开展商业化运营。

  ▲ Apollo自动驾驶开放路线、城市大脑:阿里云城市大脑,打造新型精细化管理城市

  阿里云城市大脑致力于通过互联网和人工智能,打通城市数据管道,发掘数据价值,构建城市新的基础设施。城市大脑总体架构包含四大平台:应用支撑平台(繁荣产业生态,通过数据资源的消耗换来自然资源的节约),智能平台(通过深度学习技术,挖掘数据资源中的金矿,让城市具备思考的能力),数据资源平台(全网数据实时汇聚,让数据真正成为资源,保障数据安全,提升数据质量,通过数据调度,实现数据价值),一体化计算平台(为城市大脑提供足够的计算能力具备极致弹性,支持全量城市数据的实时计算,EB级别的存储能力,日PB级处理能力,百万路级别视频实时分析能力)。

  在实际运行过程中,城市大脑利用实时全量的城市数据资源全局优化城市公共资源,即时修正城市运行缺陷,实现城市治理模式、服务模式和产业发展的三重突破:城市治理模式突破—提升政府管理能力,解决城市治理突出问题,实现城市治理智能化、集约化、人性化;城市服务模式突破—更精准地随时随地服务企业和个人,城市的公共服务更加高效,公共资源更加节约;城市产业发展突破—开放的城市数据资源是重要的基础资源,对产业发展发挥催生带动作用,促进传统产业转型升级。

  依托腾讯聚集的合作伙伴资源优势及“腾讯觅影”在医疗AI领域取得的技术突破,腾讯公司构建了由医疗机构、科研团体、器械厂商、AI创业公司、信息化厂商、高等院校、公益组织等多方参与的医疗影像幵放创新平台——腾讯觅影AI辅诊开放平台。腾讯觅影是腾讯首个AI医疗产品,同时也是腾讯与国内一百多家顶尖三甲医院的合作成果。目前,其储备了约50万医学术语库,超过20万医学标注数据库、超过100万术语关系规则库、超过1000万健康知识库、超过8000万高质量医疗知识库以及超过1亿的开放医疗百科数据,涵盖了绝大部分对外公开的权威医学知识库。

  “AI医学影像“和“AI辅助诊断”是腾讯觅影AI辅诊开放平台的两项核心能力,其通过模拟医生的成长学习来积累医学诊断能力,可辅助医生诊断、预测700多种疾病,涵盖了医院门诊90%的高频诊断,其遵循与人类医生类似的学习过程,主要分为三个阶段:首先,其运用自然语言处理和深度学习等人工智能技术,学习、理解和归纳权威医学书籍文献、诊疗指南和病历等医疗信息,自动构建出一张“医学知识图谱”;然后,基于病历检索推理和知识图谱推理知识,建立诊断模型;最后,在人类医学专家的校验下,优化诊断模型。

  腾讯觅影已与智业软件、山东顺能、广州海鹚、金蝶医疗、健康160等医疗信息化厂商,以及厦门大学附属第一医院、山东省立医院、安徽省第二人民医院、南方医科大学深圳医院、香港大学深圳医院、宝安中医院集团、深圳市萨米医疗中心、中国科学院大学深圳医院、宝安区妇幼保健院、龙岗区妇幼保健院等医疗机构分别签署了人工智能战略合作协议,共同构建智慧医疗开放生态圈。腾讯觅影平台旨在发挥“连接器”的作用,从创新创业、全产业链合作、学术科研、惠普公益四个维度连接核心参与方,共同推动国家人工智能战略在医疗领域的落地。

  科大讯飞致力于智能语音及人工智能核心研究和产业化十八年,已发展成为亚太地区最大的智能语音及人工智能上市公司。入选职能语音国家新一代人工智能开放创新平台之后,科大讯飞将通过一个开放创新研究平台+五大开放创新服务平台的建设路径,助力我国的智能语音及人工智能技术及应用达到国际领先水平。

  在建设专业化众创孵化空间方面,平台通过开放核心技术开发接口和云端在线服务能力,让创业者可以几乎零成本地利用智能语音及人工智能技术进行创新创业。截至2018年7月底,平台开发者团队数量超过80万家(同比增长114%);过去18个月累计使用该平台的独立终端数达19亿个(冋比増长357%),日均交互次数达46亿人次。

  2018年9月,国家科技部宣布,依托商汤集团建设智能视觉国家新一代人工智能开放创新平台。商汤成为第五大国家人工智能开放创新平台。依托20年的人工智能科研技术积淀,商汤打造了集基础研究、产业结合、行业伙伴一体化、开放共享的智能视觉开放创新平台。商汤科技拥有人脸检测跟踪、人脸关键点定位、人脸身份验证、场景识别等核心技术,基于智能视频、身份验证、移动互联网产品在智慧城市、智能终端、互联网娱乐、智慧金融等领域的应用,推出了SenseAR开发者平台、SenseAR增强现实感绘制引擎、SenseMedia智能图片视频审核平台、SenseFace 3.0人脸布控实战平台和SenseFoundry方舟城市视觉平台等新产品,打造智能视觉开放创新平台,加速人工智能技术的落地。目前商汤已有400余家战略合作伙伴。

  为推动国家AI在视觉领域的发展,商汤智能视觉开放创新平台有四大使命:1)通过超算系统、训练系统、智能视觉工具链等核心基础的研发、数据系统的构建,在基础研究和核心技术上与国际保持同步研发水平;2)实现智能视觉底层关键技术和共性支撑技术的突破,促进智能视觉技术与多行业的快速结合、产业赋能;3)建立人工智能国际化人才体系和培养国际化人才;4)通过人工智能赋能,创造以众创空间、孵化器为代表的大众创业、万众创新的生态环境,促进新旧动能转换。

  当前教育行业存在各机构各自为战,敝帚自珍,重复造轮子的问题,导致行业整体教学效率低下、教学质量有限。“松鼠AI”是由松鼠AI 1对1开发的国内第一个拥有完整自主知识产权、以高级算法为核心的自适应学习引擎(可理解为一个智适应教学机器人),可将知识点拆分到纳米级,精准侦测不同学生的知识漏洞,查漏补缺,模拟特级教师给孩子一对一量身定做教育方案并且一对一实施教育过程,比传统教育效率提升5到10倍。目前,松鼠AI 1对1打造了松鼠AI智适应教育开放平台,教育机构可将松鼠AI的一体化智适应教学平台整合进入自己的业务解决方案中,直接使用松鼠AI的一体化智适应教学平台解决教学中的部分或者全部问题,利用平台补充自身教学教研能力的短板,在测评、制定学习计划、教学、练习等环节上,全方位提升自身服务能力,提高学生的学习效率和学习效果。

  机构将智适应教育平台产品整合进自己的业务解决方案后,其业务中的教学环节可以全部或者部分交给智适应教育平台。教育机构商业模式上主要由市场、运营服务、教学三部分成,教学环节成本一般占机构的40%以上,用智适应教育平台产品解决教学环节,未来最大可以将教学环节成本节省到接近5%,从而优化其商业模式,让机构可以将重心放在市场和运营服务上,整体提高其业务运行水平。

  目前该平台已接入2000多家机构,覆盖20多个省,700多个城市,服务于近200万学生,续班率80%以上,同时机构也基本通过平台解决了自身的教学问题。另外,这些机构中有不少服务于三四和五六线城市,松鼠AI智适应教育产品的引入也为三到六线地区的学生带来了目前最先进的智适应学习服务,一定程度上缓解了我国教育资源不公平的问题。

  具体开放方式上,松鼠AI智适应教育开放平台面向教育机构提供三种层次的开放:1)智适应教学产品和教研产品层面的开放,合作者直接使用产品为其客户服务;2)自定义智适应产品层面的开放,合作者可以根据自己的需求和能力对智适应产品进行改造,并以自己的品牌进行二次输出;3)智适应引擎层面的开放,合作者可以基于智适应引擎,研发打造不同应用不同场景的智适应产品。

  这个服务的核心是把引擎的功能通过API形式抽象包装给合作伙伴,大幅度降低对合作伙伴的数据建模水平和人工智能实际应用水平的要求,让广大教育机构低成本共享松鼠AI与国际领先的研究机构(如SRI, CMU, IIIA, UC Berkeley等)在人工智能教育领域上取得的技术突破和经验,造福整个中国K12教育产业。在这个底层引擎的基础上,平台研发了智适应DL测评、智适应学习、智适应教学监控等产品。

  2018年4月,京东发布京东人工智能开放平台NeuHub,Neuhub主要围绕自然语言处理、语音交互、计算机视觉等方向,建设了京东智能客服解决方案。该平台不仅验证了多项落地性技术,同时助力国家多个战略级产学研合作项目开展,也标志着京东AI研发开始从应用型向核心技术研发和输出方面发力。相关客户包括叮咚、VIVO、三星、达达、华为、长虹等。

  按照京东的规划,NeuHub平台将作为普惠性开放平台,不同角色均可找到适合自己的场景,例如用简单代码即可实现对图像质量的分析评估,支撑科研人员、算法工程师也可以不断设计新的AI能力以满足用户需求,并深耕电商、供应链、物流、金融、广告等多个领域应用,探索试验医疗、扶贫、政务、养老、教育、文化、体育等多领域应用,聚焦于新技术和行业趋势研究,孵化行业最新落地项目,重构各行业的工作流程和业务模块。

  京东技术布局下的 AI 战略全景图以 “三大主体、七大应用场景和五个人工智能产业化的布局方向”为核心,即以 AI 开放平台、AI 基础研究、AI 商业创新三个主体,通过产学研相结合、高端人才培养以及核心人才引进打造科技能力,将AI应用于金融科技、智慧物流、智能消费、智能供应、对外赋能,对应的七大应用方向是电商、物流、金融、零售、时尚、公共事务、智能硬件。京东AI技术将从0-1, 1-N,N-无穷,三个战略方向发力,通过算法研究院强大的技术研究能力,创造一些以前从来没有过的技术能力;打磨技术到体验,让技术在迭代中提升;积极探索技术落地的可能性,从而赋能无穷场景,将体验转变为价值。对应这三大并行的技术发展方向,京东AI平台与研究部打造了AI研究院、AI平台部及AI创新部三个部门,来更好地助推京东AI的成长。

  与BAT的AI平台相比较而言,京东AI平台的布局更加是由内而外的,并且更加聚焦。它的研究导向首先是依托内部的需求,比如电商、物流、金融本身都是京东的核心业务,比如京东电子商务平台对智能客服存在很大需求,而京东金融对客服也存在很大需求。京东AI平台利用现有的经验能够很快用于京东金融,因为只要有数据,就可以很容易在接近的场景进行扩展。进一步而言,京东AI平台还能够将客服在多个场景的能力形成解决方案,开放给行业。从京东自身应用场景出发,打造AI核心技术,然后在反哺京东自身业务的同时,进一步赋能给行业与开发者,是打造AI开放平台的一条不错的思路。

  搜狗公司也推出了自己的人工智能开放平台。这一平台以智能语音和智能视觉技术为核心,面向办公、翻译、同传、话务、图像识别、质检审核、人机交互、安防等场景提供开放服务。搜狗AI人工智能开放平台致力于建设AI商业生态,向合作伙伴提供私有化部署、定制服务,通过自建行业+AI解决方案以及发展更多合作伙伴进行产品共建,积极与各行业SI系统集成商、ISV软件服务商以及AI生态链里的各类合作伙伴,例如云服务商、硬件厂商、物联网、数据服务商、AI/AR/VR/MR等科技公司一起打造垂直领域的解决方案,共同利用AI能力推进产业智能化升级。